ML/DL Micro-benchmark Suite Contact: Prasanna Balaprakash (pbalapra@anl.gov), Venkat Vishwanath (venkat@anl.gov), Kalyan Kumaran (kumaran@anl.gov), ALCF, Argonne National Laboratory ### **Summary Version** 1.0 #### Purpose of Benchmark Convolutions, single and half precision GEMM, FFT, and other machine/deep learning math algorithms not included in other CORAL benchmark suites. #### Characteristics of Benchmark ML/DL micro-benchmark suite consists of a subset of kernels and input sizes from DeepBench. This comprises a set of basic operations (dense, sparse matrix multiplications, convolutions as well as some recurrent layer types) for training and inference. In addition, the benchmark suite also includes FFT. FFTs consists of 1D and 2D FFT kernels. #### Mechanics of Building and running the Deepbench Benchmark Get the code by doing: git clone https://github.com/baidu-research/DeepBench See the detailed build and run instructions at the following URL: https://github.com/baidu-research/DeepBench#getting-the-code ### Mechanics of Building and Running FFT Vendors are free to use their own FFT source code and library of their choice. ### Reporting Rules #### For the DeepBench Benchmarks: **Base single precision run:** Suite is run in single precision. Calls to vendor's optimized library is allowed. **Optimized reduced precision run:** Vendors can run in reduced precision to obtain better results. The precision must be reported and the version of the routines must be supported in a library. #### **For FFT:** **Base run:** Report the time and Gflops to compute the DFT using FFT for R2C for various 1D and 2D FFT kernel. Report the performance for batch size of 1 for single precision and double precision. Report the performance for the largest batch size one can run on a node. Calls to vendor's optimized library is allowed. **Optimized reduced precision run:** Vendors can run in reduced precision to obtain better results. The precision must be reported and the version of the routines must be supported in a library. #### A. Deepbench Training | 1) Dense Matrix Multiplication | | | | | | | | | | | | | |--------------------------------|--------------|---------------------|------------------------------|-------------------------------------|--------------------------------|-------------------------|-----------|-----------|----------------------------------|--------------------------------|--------------------------------|---| | M | N | K | A
Tra
nsp
ose | B
Trans
pose | Time (usec) | | | | | | | | | 4096 | 7000 | 4096 | N | N | | | | | | | | | | 35 | 8457 | 4096 | Т | N | | | | | | | | | | 6144 | 16 | 2048 | Т | N | | | | | | | | | | 2) Convo | lution | | | | | | | | | | | | | W (input
- time) | H
(input) | C
(chan
nels) | N
(ba
tch
siz
e) | K
(num
ber of
filters
) | S
(filt
er
widt
h) | R (fil te r h ei g ht) | pad
w | pad
h | Hor
izo
ntal
Stri
de | Ver
tica
I
Stri
de | fwd
_ti
me
(us
ec) | bwd
_inp
uts_t
ime
(use
c) | | 224 | 224 | 3 | 8 | 64 | 3 | 3 | 1 | 1 | 1 | 1 | | | | 224 | 224 | 3 | 16 | 64 | 7 | 7 | 3 | 3 | 2 | 2 | | |-----------------|-------------|---------------|-------------------------|------------------------------------|--------------------|------|--------|---------|---|---|--| | 14 | 14 | 1024 | 16 | 2048 | 1 | 1 | 0 | 0 | 2 | 2 | | | 3) Recuri | rent Layer. | s - LSTN | 1 | | | | | | | | | | Input | N | Times
teps | Tim e For war d (us ec) | Time
Back
ward
(usec
) | Geomean Time(usec) | | | | | | | | 4096 | 128 | 25 | | | | | | | | | | | 4) Recuri | rent Layer | s - GRU | | | | | | | | | | | Hidden
units | N | Times
teps | Tim e For war d (us ec) | Time
Back
ward
(usec
) | Geo | meai | n Time | e(usec) | | | | | 1024 | 64 | 1500 | | | | | | | | | | ## B. DeepBench Inference | 1) Dense Matrix Multiplication | | | | | | | | | |--------------------------------|------|------|------------------------|------------------------|-------------|--|--|--| | M | N | K | A
Tra
nsp
ose | B
Tra
nsp
ose | Time (usec) | | | | | 5124 | 1500 | 2560 | N | N | | | | | | 8448 | 4 | 2816 | N | N | | | | | | 1024 | 4 | 510 | N | N | | | | | | | | |---------------------------------|----------------|---------------------|------------------------------|--------------------------|--------------------------------|----------------------------------|---------------------------------|-----------|----------------------------------|--------------------------------|---------------------------| | 1024 | 4 | 512 | N | N | | | | | | | | | 2) Sparse Matrix Multiplication | | | | | | | | | | | | | M | N | K | A
Tra
nsp
ose | B
Tra
nsp
ose | Sp
arsi
ty | Spar
se
time
(use
c) | Den
se
time
(us
ec) | Geom | Geomean Time (usec) | | | | 10752 | 2 | 3584 | N | N | 0.9
5 | | | | | | | | 10752 | 3000 | 3584 | N | N | 0.9
5 | | | | | | | | 7680 | 1500 | 2560 | N | N | 0.9 | | | | | | | | 3) Convo | 3) Convolution | | | | | | | | | | | | W (input
- time) | H (input) | C
(chan
nels) | N
(ba
tch
siz
e) | K (nu mb er of filte rs) | S
(filt
er
wid
th) | R
(filter
heig
ht) | pad
w | pad
h | Hor
izo
ntal
Stri
de | Ver
tica
I
Stri
de | Time
Forward
(usec) | | 700 | 161 | 1 | 4 | 32 | 20 | 5 | 0 | 0 | 2 | 2 | | | 224 | 224 | 3 | 1 | 64 | 7 | 7 | 3 | 3 | 2 | 2 | | | 14 | 14 | 1024 | 2 | 20
48 | 1 | 1 | 0 | 0 | 2 | 2 | | | 4) Recurr | ent Layers | s - LSTM | , | | | | | | | | | | Input | N | Times
teps | Time Forward (usec) | | | | | | | | | | 1536 | 4 | 50 | | | | | | | | | | | 5) Recurr | ent Layers | - GRU | | | | | | | | | | | Hidden
units | N | Times
teps | Time Forward (usec) | |-----------------|---|---------------|---------------------| | 2816 | 4 | 1500 | | # C. FFT for DFT (r2c) | Dims | Floating Point
Precision | Batch Size | Time (s) | Gflop/s | |-------------|-----------------------------|--|----------|---------| | 1024 | Single | 1 | | | | | Single | X (enter the largest batch size on a node) | | | | 1024 | Double | 1 | | | | | Double | Х | | | | 4096 | Single | 1 | | | | | Single | X | | | | | Double | 1 | | | | | Double | Х | | | | 32x32 | Single | 1 | | | | | Single | Х | | | | | Double | 1 | | | | | Double | х | | | | 1024 X 1024 | Single | 1 | | | | | Single | X | | |-----------|--------|---|--| | | Double | 1 | | | | Double | X | | | 4096x4096 | Single | 1 | | | | Single | Х | | | | Double | 1 | | | | Double | Х | |